Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5704, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459080

RESUMO

Line waves (LWs) refer to confined edge modes that propagate along the interface of dual electromagnetic metasurfaces while maintaining mirror reflection symmetries. Previous research has both theoretically and experimentally investigated these waves, revealing their presence in the microwave and terahertz frequency ranges. In addition, a comprehensive exploration has been conducted on the implementation of non-Hermitian LWs by establishing the parity-time symmetry. This study introduces a cutting-edge dual-band line-wave waveguide, enabling the realization of LWs within the terahertz and infrared spectrums. Our work is centered around analyzing the functionalities of existing applications of LWs within a specific field. In addition, a novel non-Hermitian platform is proposed. We address feasible practical implementations of non-Hermitian LWs by placing a graphene-based metasurface on an epsilon-near-zero material. This study delves into the advantages of the proposed framework compared to previously examined structures, involving both analytical and numerical examinations of how these waves propagate and the underlying physical mechanisms.

2.
Opt Express ; 31(10): 16645-16658, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157740

RESUMO

Considering the widespread applications of resonant phenomena in metasurfaces to bend, slow, concentrate, guide and manipulate lights, it is important to gain deep analytical insight into different types of resonances. Fano resonance and its special case electromagnetically induced transparency (EIT) which are realized in coupled resonators, have been the subject of many studies due to their high-quality factor and strong field confinement. In this paper, an efficient approach based on Floquet modal expansion is presented to accurately predict the electromagnetic response of two-dimensional/one-dimensional Fano resonant plasmonic metasurfaces. Unlike the previously reported methods, this method is valid over a wide frequency range for different types of coupled resonators and can be applied to practical structures where the array is placed on one or more dielectric layers. Given that the formulation is written in a comprehensive and flexible way, both metal-based and graphene-based plasmonic metasurfaces under normal/oblique incident waves are investigated, and it is demonstrated that this method can be posed as an accurate tool for the design of diverse practical tunable/untunable metasurfaces.

3.
Opt Express ; 30(20): 35486-35499, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258499

RESUMO

Due to the wide range of applications of metal/graphene-based plasmonic metasurfaces (sensors, absorbers, polarizers), it has become essential to provide an analytical method for modeling these structures. An analytical solution simplified into a circuit model, in addition to greatly reducing the simulation time, can become an essential tool for designing and predicting the behaviors of these structures. This paper presents a high-precision equivalent circuit model to study these structures in one-dimensional and two-dimensional periodic arrays. In the developed model, metallic patches similar to graphene patches are modeled as surface conductivity and with the help of current modes induced on them, the equivalent impedance related to the array is calculated. However, the proposed method has less complexity than the previous methods, is more accurate and more flexible against geometry changes and can be applied to an array of patches embedded in a layered medium with minor changes and modifications. A Metal-Insulator-Metal metasurface, as well as an array of graphene ribbons placed on two dielectric layers, are investigated as two types of widely used metasurfaces in this paper and it is shown that the proposed circuit model is a fast and efficient method to predict the behaviors of these metasurfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...